Epidermolysis Bullosa
Introduction

• EB encompasses many clinically distinctive disorders with 3 features in common
 • Genetic transmission
 • Blister formation
 • Mechanical fragility of the skin

• 3 major forms of inherited EB
 • Simplex
 • Junctional
 • Dystrophic
History

- First described by von Hebra in 1870
- Simplex and dystrophic separated by Hallopeau in 1898
- Junctional EB described by Herlitz in 1935
- National EB Registry established in 1986
Epidemiology

- Prevalence estimate in 1990 was 8.22 per million
- 5 year incidence estimates: 19.6 per one million live births
- EB simplex is most common
- Recessive dystrophic EB is least common
Pathogenesis

- Mutations of structural proteins of the epidermis
 - EBS
 - Intraepidermal tonofilaments - K5, 14
 - Junctional EB
 - Intralamina lucida - anchoring filaments and hemidesmosome, laminin 5, BP Ag 2, α6 β4 integrin
 - Dystrophic EB
 - Sublamina densa - anchoring fibrils, collagen VII
CLEAVAGE PLANES IN EPIDERMOLYSIS BULLOSA

- Basal keratinocytes
- Lamina lucida
- Lamina densa
- Sublamina densa

EB simplex
Generalized atrophic benign EB
Junctional EB Herlitz
Dystrophic EB
EB Simplex

- Intraepidermal split
- Keratins 5 and 14 (basal layer)
- 11 subtypes known, but 4 main AD inherited
- 4 subtypes
 - Weber-Cockayne
 - Koebner
 - Dowling-Meara
 - EBS with mottled pigmentation
- Rare subtype of EBS with muscular dystrophy-defect in plectin
EBS- Weber- Cockayne

- Localized recurrent bullous eruption on hands and feet
- Can appear as chronic form in infancy or later in life
- Exacerbated in hot weather or with prolonged walking - i.e. military
- May have hyperhidrosis
- Intraepidermal and suprabasal - no scarring
- Tx: Drysol bid can reduce blistering; treat infection
EBS- Weber- Cockayne

EBS- Koebner

- Generalized form
- 1/500,000 births
- Vesicles, bullae, and milia over hands, elbows, knees, feet
- Birth or soon after
- Recurs when child begins to crawl or walk
- Worse in the summer
- Lesions are sparse with no severe atrophy
- Usually no mucous membrane or nail involvement
- Tx: treat local infection, avoid trauma
EBS- Koebner
EB Herpetiformis- Dowling- Meara

- Circinate configuration in infancy
- May have milia, but no scarring
- Oral mucosa is involved
- Nails shed and can regrow
- Blistering improves with age
- May have hyperkeratosis of palms and soles after 6-7 y.o.
- Clumped tonofilaments on EM
Dowling- Meara
EBS with mottled pigmentation

- One Swedish family
- Scattered hyper- and hypopigmented macules
- Mottled pigmentation fades after birth
- Seasonal blisters in acral areas
- Vacuolization of the basal layer
EBS with muscular dystrophy

- Autosomal recessive
- Widespread blisters at birth
- Absent plectin in skin and muscles
- Scarring, milia, atrophy, nail dystrophy, dental anomalies, laryngeal webs, urethral strictures
- Muscular dystrophy begins in childhood or later
EBS Ogna

- Generalized bruising and hemorrhagic blisters
- Autosomal dominant
- Small, acral, sanguinous blisters at birth
Junctional EB

- Autosomal recessive
- Intralamina lucida split
- 3 subtypes
 - Herlitz (JEB gravis)- laminin 5
 - Non-Herlitz (generalized atrophic benign)- laminin 5 or BP Ag 2
 - JEB with pyloric atresia- α6 β4 integrin
COMPONENTS OF EPIDERMAL BASEMENT MEMBRANE

- Basal keratinocyte
- Keratin intermediate filaments
- Hemidesmosome
- Plasma membrane
 - Keratin 5
 - Keratin 14
 - Plectin, BPAG1
 - BPAG2, integrin α6β4
 - HSPG
 - Laminins 5, 6, & 10
 - Type IV collagen
 - Nidogen, HSPG
 - Type VII collagen
 - Linkin, Fibulins
 - Fibrillins, LTBP, elastin
 - Type IV collagen
 - Types I and III collagen

Sublamina densa region
- Anchoring fibrils
- Microfibrils
- Micro-thread-like fibers
- Interstitial collagens
- Anchoring plaques
Junctional EB- Herlitz

- Severe generalized blistering
- May be present at birth
- May be fatal within a few months due to extensive denudation
- Relative sparing of hands
- Perioral and perinasal hypertrophic granulation tissue
- No scarring or milia
Junctional EB- Herlitz

- Enamel hypoplasia and pitting of teeth
- Laryngeal and bronchial lesions can cause respiratory distress and potentially be fatal
- Can affect GI tract, gallbladder, cornea, vagina
- After infancy- growth retardation, refractory anemia
- Mutations in polypeptide subunits of laminin 5
 - LAMA3
 - LAMB3
 - LAMC2
Junctional EB- Herlitz

- Wound care and infection control
- May use epidermal autografts of cultured keratinocytes of uninvolved skin grown on collagen sponges
Junctional EB- Herlitz
Junctional EB- Herlitz
Junctional EB - Herlitz
Junctional EB- non-Herlitz (generalized atrophic benign)

- Onset at birth
- Generalized blisters and atrophy
- Mucosal involvement
- Dystrophic or absent nails
- Atrophic alopecia
- Enamel defects
- Reports of multiple SCCs
- Patients often survive to adulthood
Junctional EB- non-Herlitz (generalized atrophic benign)

- Hemidesmosomes reduced or absent
- Mutations in COL17A1- encoding for BP Ag 2
Junctional EB with Pyloric Atresia

- Presents at birth
- Severe mucocutaneous fragility
- Gastric outlet obstruction
- If they survive neonatal period, blistering will improve
- Scarring of urinary tract can occur
- Mutation in α_6 or β_4 integrin
Cicatricial Junctional EB

- Described in 1985 by Haber et al
- Blisters heal with scarring, which leads to syndactyly and contractures
- Stenosis of anterior nares
- Rudimentary hemidesmosomes
Junctional EB
Dystrophic EB

- Autosomal dominant or recessive
- Mutations in COL7A1 encoding for collagen VII
- Subepidermal blistering that heals with scarring
- Anchoring fibrils deficient or defective
Dominant Dystrophic EB

- Vesicles and bullae on extensor surfaces of extremities
- Most pronounced over toes, fingers, knuckles, ankles, elbows
- Flesh-colored scarlike areas (albopapuloid) occur on trunk, often in adolescence
- Nikolsky sign is present
- Healing with scarring and atrophy
Dominant Dystrophic EB

- Milia on rims of ears, dorsal hands, extensor arms and legs
- Mucous membranes involved
- Laryngeal involvement can manifest as persistent hoarseness
- Dysphagia from pharyngeal scarring
- Scarring of the tip of the tongue
- Normal teeth
Dominant Dystrophic EB

- Nail dystrophy
- Partial alopecia of scalp
- No body hair
- Dwarfism
- Contractures and claw-like hands
- Atrophy of phalangeal bones and pseudosyndactyly
Dominant Dystrophic EB

- Albopapuloid (Pasini) is more severe form
- Cockayne- Touraine is more limited and no albopapuloid lesions are seen
- Non-inflammatory superepidermal bulla on path
- EM- cleavage beneath the basal lamina, reduced and rudimentary anchoring fibrils
Dominant Dystrophic EB

- Skin grafts and allogenic cultured keratinocytes can be used in treating non-healing skin defects
- Blistering will decrease with time
Dominant Dystrophic EB
Dominant Dystrophic EB
Dominant Dystrophic EB
Bart’s Syndrome

- Autosomal Dominant
- Mechanoblisters
- Congenital localized absence of skin on lower extremities
- Renal aplasia
- Mandibulofacial dysostosis
Recessive Dystrophic EB

- Mutations in gene encoding type VII collagen (COL7A1)
- 3 variants
 - Generalized
 - Mild or mitis
 - Severe (Hallopeau- Siemens)
 - Localized
 - Inverse
Recessive Dystrophic EB - mild/ mitis

- Blisters primarily on hands, feet, elbows, knees
- Limited complications
Recessive Dystrophic EB- Hallopeau-Siemens

- Generalized cutaneous and mucosal blistering at birth
- Encasement of fingers and toes in scar tissue-mitten deformity
 - 90% by age 25
- Microstomia and many dental caries
- May have esophageal stricture
- Anemia and growth retardation are possible
- Nutritional deficiency can lead to a fatal cardiomyopathy (selenium deficiency)
Recessive Dystrophic EB - Hallopeau-Siemens

- Fatal systemic amyloidosis (AA) has been reported
- Risk of melanoma
 - 1.5% by age 12
- High risk of SCCs
 - 22% by age 25, 50% by age 35, 77% by age 60
 - Often metastasize
 - Unresponsive to chemotherapy and radiation
 - Leading cause of death at or after mid-adolescence
 - Most patients die within in 5 years after dx of SCC
Recessive Dystrophic EB- Hallopeau-Siemens

- Educate family and refer to DEBRA (Dystrophic Epidermolysis Bullosa Research Association of America)
- Treatment is mainly palliative
 - Aggressive dental intervention
 - Nutritional support
 - Skin grafts
 - Cultured keratinocytes
Recessive Dystrophic EB - Hallopeau-Siemens
Recessive Dystrophic EB - Hallopeau-Sie
Recessive Dystrophic EB - Hallopeau-Siemens
Recessive Dystrophic EB - Hallopeau-Siemens
Approach to the Patient

- History and physical exam
- Skin biopsies for IF, EM
 - Rubbing skin with an eraser can lead to a subclinical lesion that demonstrates the split histologically
- Immunofluorescent mapping
 - EBS- BP Ag, laminin, type IV collagen all at base
 - Dystrophic EB- BP Ag, laminin, type IV collagen all at roof
 - Junctional EB- BP Ag on roof, type IV collagen at base
- Gene mutation analysis if needed
- Genetic counseling
 - Amniocentesis and chorionic villus sampling available
Treatment

- Supportive skin care
 - Maintain cool environment
 - Avoid trauma
 - Avoid and treat infection
 - Biologic dressings
 - Autologous and allogenic skin grafts
 - Surgical intervention for contractures and SCCs
Treatment

- Tissue engineered skin equivalents
 - Missing or defective protein produced by recombinant methods and applied directly to blistered skin
- Gene therapy?
Treatment

- Extracutaneous involvement
 - Pediatric dentist
 - Nutritional supplementation
 - Treat anemia
 - GI, GU, ophtho specialists as indicated
Epidermolysis Bullosa Acquisita

- Criteria proposed in 1971
 - Clinical lesions of dystrophic EB - skin fragility, trauma-induced blistering, atrophic scarring, milia, nail dystrophy
 - Adult onset
 - Lack of family h/o EB
 - Exclusion of other bullous disease
 - IgG at basement membrane by DIF
 - IgG beneath basal lamina
Epidermolysis Bullosa Acquisita

- Criteria have since been expanded
Epidermolysis Bullosa Acquisita

- Acquired EB with autoimmunity to collagen VII (component of anchoring fibrils)
- Can be similar to DEB, BP, or CP
- Can be in children or adults
- Very rare - 0.25 per million
- In some patients, autoantibodies to NC1 domain of collagen VII in the lamina densa
Epidermolysis Bullosa Acquisita

- Blisters in areas prone to trauma
- Heal with atrophic scarring and milia
- Can have mitten deformity
- MM involvement variable
- Associated with: IBD, SLE, RA, thyroiditis, DM, myeloma, lymphoma, leukemia, amyloidosis
- DIF: IgG on dermal side of salt split skin
- Treat with immunosuppressants such as cyclosporine; extracorporeal photochemotherapy has shown benefit
Epidermolysis Bullosa Acquisita
Epidermolysis Bullosa Acquisita
Epidermolysis Bullosa Acquisita
COMMON LOCALIZATION OF AUTOANTIBODIES IN INDIRECT IMMUNOFLOUORESCENCE MICROSCOPY STUDIES OF SALT-SPLIT SKIN

- Basal keratinocytes
 - Bullous pemphigoid
 - Pemphigoid gestationis
 - Linear IgA bullous dermatosis
 - Cicatricial pemphigoid

- Lamina lucida
 - Anti-epiligrin
 - Cicatricial pemphigoid

- Lamina densa
 - Epidermolysis bullosa acquisita

- Sublamina densa
 - The bullous eruption of systemic lupus erythematosus

EBA Salt-split Skin- IgG stains the floor